
Connection load-balancing of PPP-Slirp serial links over
SSH using EQL

Dimitar Ivanov <mailto:dimitar.ivanov@mirendom.org> v0.9.2, 2007-08-29

This document describes how to load-balance multiple PPP-Slirp links over SSH by using the kernel device driver

EQL, and in such a way to increase the connection bandwidth.

Contents

1 Introduction 1

1.1 Where and when is it useful . 1

1.2 Copyright . 2

1.3 Disclaimer . 2

1.4 Acknowledgements . 2

2 Understanding the concept 2

3 Software you need (OpenSSH + PPPD + Slirp + EQL) 3

4 Implementation and con�guration 3

5 Performance and conclusions 7

6 Sources and further readings 8

1 Introduction

1.1 Where and when is it useful

Slirp is a TCP/IP emulator which provides an ordinary user account with (C)SLIP/PPP capabilities. Al-

though the original software is no more supported, it still has a wide scope of usage, as far as the evolved code

is incorporated and further developed as a network adapter in virtual machines like QEMU and coLinux.

Beside the primary aim of Slirp to endow a dial-up user with an Internet connectivity, it can be applied for

routing/tunneling of IP-tra�c - for example between hosts in two di�erent LANs with access possible only

after authentication on a �rewall. If a transparent communication is required in this case, Slirp and PPPD

in combination with OpenVPN can suit your need for convenient solution, where eventually the OpenVPN

server's host operates as a transparent gateway (router) between the two networks. In the course of working

with this scenario, however, a severely limited upload bandwidth of the pppd<->slirp link will be detected,

and the slow component in the system can be identi�ed as Slirp.

Fortunately, Slirp supports connection load-balancing, and by means of the linux kernel device EQL, a load-

balancer for serial network interfaces, multiple PPP links can be bound together in order to increase the

bandwidth signi�cantly. The present document explains how to implement e�ciently this load-balancing

mailto:dimitar.ivanov@mirendom.org

2. Understanding the concept 2

technique. Finally, for con�gurations where only the download bandwidth is important, the conclusion is

made that a single link gives the best performance.

1.2 Copyright

Copyright (c) 2007 Dimitar Ivanov

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with

no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is available at

the GNU project web site [http://www.gnu.org/copyleft/fdl.html]

1.3 Disclaimer

No liability for the contents of this document can be accepted by the author under any circumstance. Use the

concepts, examples and information at your own risk. Please feel free to e-mail me suggestions, corrections

or general comments about the document so I can improve it.

All copyrights are held by their respective owners, unless speci�cally noted otherwise. Use of a term in this

document should not be regarded as a�ecting the validity of any trademark or service mark. Naming of

particular products or brands should not be seen as endorsements.

1.4 Acknowledgements

I would like to express my gratitude to Alex Hubmann for his, in various ways, friendly support to my e�ort

of writing the present document.

2 Understanding the concept

Suppose you can not connect from host_A to host_B directly but only through:

• Authentication on a �rewall

• Several hops over various accounts

• Some other tricky way ...

And for a good reason, of course, you want to route in transparent way some or all of the IP-tra�c from

A to B. Further, you are root on host_A, but your account on host_B is one of an ordinary user. In

that situation, Slirp, which is a single binary executable that can be installed on host_B, will help you to

establish a PPP connection between the hosts, and hence to solve your problem. Unfortunately, one will

discover that the upload speed of the connection is limited to 30-45 KB/s whereas the network allows much

higher performance. The good news is that if host_A is a GNU/Linux box there is something you can

do to increase the upload bandwidth signi�cantly. With help of the so-called "EQL device" or "equalizer",

implemented as a kernel module, you can bind several pppd<->slirp links (over ssh) to a single virtual

interface performing a tra�c load-balancing. Following diagram shows the described application:

--- ---

| |

| Linux server Remote *NIX server |

| Host_A Host_B |

3. Software you need (OpenSSH + PPPD + Slirp + EQL) 3

| +-----------+ +-----------+ |

| | | [ppp0] | | |

| | |---/ ssh via *host* /---| | |

LAN A | | Load- | [ppp1] | Load- | | LAN B

|-----| balancing |---/ ssh via *host* /---| balancing |----|

| | EQL over | [ppp2] | Slirp | |

| | PPP links |---/ ssh via *host* /---| | |

| | | | | |

| | | ====== Routing ======> | | |

| +-----------+ +-----------+ |

| |

--- ---

3 Software you need (OpenSSH + PPPD + Slirp + EQL)

An OpenSSH client is used in conjunction with the "pty" option of pppd to establish a secure PPP link

between the nodes.

The Point-to-Point Protocol Daemon (pppd) is needed to initiate a PPP link from host_A to Slirp on

host_B. Thus the possibility is open of routing TCP/IP-tra�c via the set up PPP device.

Slirp is a TCP/IP emulator in user space which, when started from shell, emulates (C)SLIP/PPP on the

terminal. It is installed on host_B.

The EQL device driver (kernel module "eql.ko") can bundle a few serial links into a virtual network interface

"eql" which load-balances the IP-�ow over its enslaved devices. In addition to the driver, enslaving utilities

are needed. For example, in Debian the "eql"-package provides them.

Eventually, the "iproute2" tools are used to adjust the routing on host_A.

All the required software, except Slirp, must be installed on the Linux host_A. On the peer *NIX host_B,

where we assume that a C-compiler is available, one has to install the Slirp binary compiled with the next

options de�ned (in "con�g.h", respectively "con�g.h.in") for the purpose of load-balancing:

#define FULL_BOLT yes

#define MAX_INTERFACES 4

#define MAX_PPP_INTERFACES 4

4 Implementation and con�guration

Before starting up the system, one must be able to login by ssh from the root account on host_A to the

user's account on host_B without a password. This is achieved by creating ssh-keys on A (and any other

host on the way between) and adding the public key to the �le ".ssh/authorized_keys" on the next peer.

Also con�guration �les for Slirp have to be prepared and put in the home directory on host_B. The �les

should include the options:

.slirprc: "socket"

.slirprc-0, .slirprc-1, .slirprc-2: "ppp"

Now, we are ready for launch. On host_A, several !uncompressed! PPP links to host_B are brought up

by pppd over ssh via a �ctious account for authentication "�reman@�rewall". A link is started by the next

command, where the "-l" option of slirp speci�es the link number:

4. Implementation and con�guration 4

/usr/sbin/pppd \

local 10.0.2.15:10.0.2.2 mtu 1500 passive noauth \

nodeflate novj novjccomp updetach nodefaultroute idle 0 pty \

"ssh -q -t fireman@firewall ssh -q -t user@host_B slirp -l 0"

After establishing three links (for the reason see below), they are tied up to work together by the equalizer,

which enslaves the corresponding PPP interfaces:

/sbin/ifconfig eql 172.16.1.1 netmask 255.255.255.0 mtu 1500

/usr/sbin/eql_enslave eql ppp0 1

/usr/sbin/eql_enslave eql ppp1 1

/usr/sbin/eql_enslave eql ppp2 1

Now, we are be able to route IP-tra�c via the "eql" network interface, to which the IP address 172.16.1.1 is

assigned. For example, if network destinations 192.168.1.0/24 should be reached through the remote account

on host_B, the routing table can be adjusted like:

ip route add 192.168.1.0/24 dev eql

Further, the load-balancing mechanism causes packets received out of order, but one could remedy the

problem by tuning the reordering of tcp packets - here the kernel's ipv4 variable "net.ipv4.tcp_reordering"

will be changed to its maximum value:

echo 127 > /proc/sys/net/ipv4/tcp_reordering

It should be remarked that the number of PPP links is not chosen at random. In our case, after some

experimentation with that number, the MTU of the interfaces, and also their qlen, it was found that the

best performance is provided when using tree links with default settings.

Here's a script that automates the application control. It assumes that the remote peer is also GNU/Linux,

or equivalently, that the "killall" command exists on the remote host:

#!/bin/sh -e

#

Script for installing an EQL load-balanced PPPD-Slirp connection

#

VERSION=1.0

PATH=/sbin:/usr/sbin:$PATH

MYNAME=`basename $0`

##

#

General configuration

#

For single link connection uncomment next line

#FastDownload_SlowUpload=yes

LINKS="0 1 2"

[$FastDownload_SlowUpload] && LINKS=0

Slirp is expected to be installed on remote account in $HOME/bin

REMOTE_SLIRP=bin/slirp

4. Implementation and con�guration 5

REMOTE_ACCOUNT=user@remotehost

Go first through authentication on firewall

VIA="ssh -q -t fireman@firewall"

PPP configuration

MTU=1500

PPPD=pppd

PPPD_OPTS="local 10.0.2.15:10.0.2.2 mtu $MTU passive noauth nodeflate \

novj novjccomp updetach nodefaultroute idle 0"

EQL_IP=172.16.1.1

REMOTE_LANS="192.168.1.0/24"

If existing, load $HOME/.<script name>rc

where you can define your own configuration

CFG_FILE=$HOME/.${MYNAME}rc

test -f $CFG_FILE && . $CFG_FILE

CHECK_STATUS=no

##

#

Functions

#

Status_EQL() {

set l 0

set -- $LINKS

Count the ppp links

while [-n "$1"]; do let l=l+1; shift ; done

Verify this number against the setup value

[`ip link list |grep "[pp]pp.*SLAVE" |wc -l` -eq $l] \

&& { echo "EQL up" ; return 1 ; } \

|| [$ACT = status] && { echo "EQL down" ; return 1 ; }

return 0

}

##

#

MAIN

#

[$# -eq 0] && set -- -h

while [$# -gt 0]; do

ACT=$1

case $ACT in

-h) cat << EOH

Usage: $MYNAME [OPTIONS] start|stop|restart|status

Options:

4. Implementation and con�guration 6

-h Help

-v Print script version and exit

Actions:

start Start EQL if not running, or if the number of links less then

defined (useful also for monitoring)

stop Stop EQL

status Status of EQL

restart Restart EQL

EOH

exit

;;

-v) echo $VERSION

exit

;;

start) CHECK_STATUS=yes

;;

stop) CHECK_STATUS=no

;;

restart) CHECK_STATUS=no

;;

status) CHECK_STATUS=yes

;;

*) set -- -h -h

;;

esac

shift

done

[$CHECK_STATUS = yes] && { Status_EQL || exit ; }

Clean up current links (remote and local)

ssh -q $REMOTE_ACCOUNT killall -q $REMOTE_SLIRP || true

pkill -f "pppd.*slirp" || true

Unload the EQL module, it is then automatically loaded by ifconfig

rmmod eql || true

[$ACT = stop] && echo "EQL stopped" && exit

echo "EQL ${ACT}ing ..."

echo ""

for i in $LINKS

do

$PPPD $PPPD_OPTS pty "$VIA ssh -q -t $REMOTE_ACCOUNT $REMOTE_SLIRP -l $i"

done

5. Performance and conclusions 7

sleep 2

ifconfig eql $EQL_IP netmask 255.255.255.0 mtu $MTU

sleep 2

Enslave ppp's

for i in $LINKS

do

eql_enslave eql ppp$i 1

done

echo 127 > /proc/sys/net/ipv4/tcp_reordering

Slirp's management IPs

ip route add 10.0.2.0/28 via 10.0.2.2

Add new routes

for i in $REMOTE_LANS

do

ip route add $i via $EQL_IP

done

echo ""

echo "... EQL ready"

exit 0

In a special case you can also connect two hosts directly without going through a third host (like a �rewall).

Here, it means to set the "VIA" variable in the "General con�guration" paragraph to an empty string or to

comment it out.

5 Performance and conclusions

With the applied technique of serial line load-balancing in various con�gurations in standard 100 Mbit/s

(12.5 MB/s) LANs, the upload data throughput was increased 15-35 times (0.45-1.1 MB/s) compared to a

single-link connection; although it varied for download and upload. On the other hand, in the "real world"

with WAN connections in Internet, most probably the rate will be of a lower extent - in one particular case

tested, the bandwidth reached 5-7 times higher values then its original rate of 30KB/s.

The performance measurements show that the upload rate increases strongly in all cases. The disadvantage,

however, is that the download rate decreases by 20-30% compared to one-link con�guration! Consequently, if

you connect two hosts by pppd<->slirp, and only a high download speed is required but upload is irrelevant,

then don't load-balance the connection - a single link is the best solution; still compile Slirp with de�ned

FULL_BOLD option. Regarding the script above, the line "FastDownload_SlowUpload=yes" has to be

uncommented then.

Eventually, when both directions play role, we have to accept that the load-balancing will boost the upload,

yet impede to some extend the download. Also upload could be faster than download.

During a period of about one month the system has been observed to break few times such that the equalizer

ceased to load-balance the connection as normal and data �ow over one of the enslaved links but not the

others. The trivial work-around is just to monitor the connection and reestablish it in case of failure.

6. Sources and further readings 8

Finally, in a more sophisticated variant of the method, the load-balancing by de�ning di�erent network

paths for the enslaved links and going over di�erent physical interfaces, can provide you with a simple

failover solution (at least on the initiating side of the connection).

6 Sources and further readings

The latest version of this HOWTO can be found at http://www.mirendom.org/docs.html

You could �nd helpful following documents and links concerning Slirp, PPP and EQL:

• NET3-4-HOWTO

• PPP-HOWTO

• SLIP-PPP-Emulator

• (url url="http://slirp.sourceforge.net/">

• Using EQL With Linux - Primitive Load Balancing

<http://www.indyramp.com/eql/eql.html>

• (HOWTO) Tunneling the hard way: using slirp, pppd and socat

<http://forums.gentoo.org/viewtopic-t-400679.html>

http://www.indyramp.com/eql/eql.html
http://forums.gentoo.org/viewtopic-t-400679.html

	Introduction
	Where and when is it useful
	Copyright
	Disclaimer
	Acknowledgements

	Understanding the concept
	Software you need (OpenSSH + PPPD + Slirp + EQL)
	Implementation and configuration
	Performance and conclusions
	Sources and further readings

